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Abstract—Expressions for the self-energy of straight-line dislocation segments are derived on the basis of
the pseudo-continuum theory. Final results are given in simple form and are shown to be valid even for
very short segments of the order of 10 interatomic distances. The dependence of the energy expressions on
the assumptions introduced is discussed. Dispersive terms are also derived and their influence on the values
of the energy is studied. The results are compared with those obtained on the basis of the classical theory
of elasticity. The use of the pseudo-continuum model obviates the necessity of introducing an ill-defined
core parameter, because in this model the singularity on the dislocation line does not exist. It is the
presence of this singularity in classical elasticity which necessitates the introduction of the core parameter.
Numerical data illustrate the results obtained as summarized in two tables.

INTRODUCTION

The aim of the present paper is the determination of the energy of straight-line dislocation
segments within the framework of the pseudo-continuum model (Rogula[1] 1965, Kunin[2]
1966). This model permits to describe discrete systems by means of the mathematical apparatus
usually used for continua. The expressions determining the self-energy of dislocations per unit
length obtained on the basis of classical linear elasticity contain an arbitrary parameter, namely
the core radius. This is connected with the fact that at small distances from the dislocation line
classical elasticity is no longer applicable, as exhibited by the feature of the energy expressions
becoming divergent (infinite) when the core parameter approaches zero. The estimates of the
value of this parameter used in the literature on dislocation theory[3-5] vary in the wide range
of 1/4 to 5 times the magnitude of the Burgers vector.

By contrast, in pseudo-continuum theory there is no necessity at all to introduce such a
parameter. This theory was employed successfully to determine the energy of defects of
dislocation lines, such as kinks and jogs[6-8], a problem which the classical elasticity is not
capable of treating because the size of these defects is of the order of atomic lattice distance.

The pseudo-continuum model could be interpreted as a certain nonlocal theory of a
continuum, in the sense that, first, there is spatial dispersion and, second, the relation between
the stress tensor and the dislocation tensor is of functional character. It is, however, important
to be aware of the fact that a pseudo-continuum is describing discrete systems, while the object
dealt with by nonlocal theories in the usual sense concerns continua with certain additional
parameters, for example in the nature microstructure.

The pseudo-continuum theory exhibits, as is typical for nonlocal theories, nonuniqueness in
defining many physical quantities, e.g. the strain energy density. This property allows to
simplify to a considerable degree the energy expressions. As a consequence, the structure of
the final results is such as to make the influence of various physical effects readily recognizable
and, in addition, physical interpretation and comparison with classical theory becomes readily
possible.

1. DESCRIPTION OF THE MODEL

It is the basic concept of the pseudo-continuum theory that the interpolation of any function
defined over a discrete periodic structure is unique in terms of a function defined over a
continuum. The uniqueness requirement indeed determines the class of interpolating functions.
These are meromorphic functions and their Fourier transforms are distributions with a compact
support in the closure of the first Brillouin zone{l,2]. The elasticity tensor is replaced by a
two-point tensorial function. The introduction of dislocations into the medium no longer
permits the use of a displacement description u;. Rather, two basic fields need to be introduced,
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namely, the distortion field 8; and the velocity field v, Equations
€xmBims = 0, Bik —vy =0
Wi=ti,  Bim = Uim)
for a medium without dislocations have to be replaced by equations

€umBitm = — iy, Bik — Uik = Ji (1.1

for a medium with dislocation, where a; denotes the dislocation density tensor, while J
denotes the dislocation flux density. We also have

Bi(%) = uip(X), T¢L

where L is the dislocation line and ¥ denotes Cartesian coordinates. Equations (1.1) have to be
supplemented by the conservation conditions

apk =0,  aut €ymfimi =0. (1.2)
The equations of motion, in the absence of body forces, are
pﬁ,' —Oikk = 0 (13)

where p is the mass density and oy is analogous to the stress tensor in continuum mechanics. It
is defined in terms of the relation

ou(X) = f (X — BIBa(E) &Y. (L4)

From eqns (1.1)—(1.4) we can obtain separate equations for the distorsion field and the velocity
field. The solution to these equations is expressed in terms of the same Green's tensor.
Renouncement of the displacement description seemingly increases the number of functions to
be determined. The degree of difficulty, however, is not increased by this circumstance. The
general solution of these equations may be found in [1]. The Green’s functions depend on the
elastic properties of the material, i.e. cy;(¥ — X'). In the present study we restrict our attention
to static problems for an isotropic pseudo-continuum. Then the components of ¢y, or rather
their Fourier transforms, depend on the length of the wave vector k only, (but not on its
direction) and the tensorial structure is the same as for the classical elasticity tensor. Thus

Cijkll(lg) = p[CIZ(k) - 2c22(k)]8ij8kl + Pczz(k)[5ik5ﬂ + 8ubjx ] (L.5)

and the transform of the tensorial Green’s function is

S L8 kk( 11
G""(")‘p?[cz’(kﬁ?l(c,’(k) c:’(k))] (16)

where ¢, and ¢, denote the longitudinal and transversal wave velocity, respectively. Even in the
simple case of an isotropic pseudo-continuum these velocities depend on the wave vector. This
is related to the fundamental feature of a pseudo-continuum, namely, in spite of a continuum
form of the functions and equations, it describes periodic discrete systems with all its
properties, the most significant being the dispersion. In the isotropic case the Brillouin zone is a
sphere.

Finally, the isotropic properties lead to three independent restrictions as follows:

(1) Specific symmetries of the tensor ciu;

(2) Special form of functional dependence of c¢; on k:

(3) Brillouin zone is a sphere.
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2. DISLOCATION ENERGY IN PSEUDO-CONTINUUM
The dislocation energy in the pseudo-continuum is given as follows:

W= % ff Bu(X)cui(% — ¥)Bu(X) d’x &*x'

=,%ﬁ§f Bik(k—)cikjl(lg)ﬂkl(“ k) &k @1
where
Bii(f) = —J’f dx' dsxnc"klm(f,_f")a""(x_f')fmjsa;;,’:ah(x") 22)
and
Bii(k) = f & " B(%) X == Cotam (K)Gin (k)€ misikrcrss (K. 2.3)

The above expressions refer to the static case and, consequently, the flux J does not appear.
The expressions for 8; and W are given both in X and k space because in %-space they are in
the form of convolutions, and thus in k-space they are in convenient form for .further
calculations. After inserting (2.3) into (2.1) we obtain rather complicated expressions defining
the energy of a dislocation line of arbitrary shape. It is desirable to simplify these expressions
and we return for this purpose to relations (2.1) for quasi-stationary dislocations. We assume
that the time-rate of change of J,(%, f) and v;(%, t) is so slow that J,;, and v; may be set equal to
zero. Relation (2.1) has to be replaced by

W(t) = ff Bii(%, ey (X — X)Bu(x', 1) dx &x'. 24
Differentiation of this expression with respect to time yields

W= f f %% (X — ¥)Bu(x', t) d*x dx". (2.5)
Making use of the second eqn (1.1) we can transform (2.5) to

W= ff Ui,j(x, t)Ciikl(f —®)Bu(®, 1) Ex &'+ ff ]ij(x, t)Cijkl(f_ )Bulx', 1) &x dx'.
(2.6)

Let us represent J,; in the form

Jyi(%, )= 'a% + (%, 1) @7
where ¢; is an arbitrary vector function. Then
W= f f ‘—aé‘i;—f’—tl Ciia(X — ) Bu (X', t) dx d*x'

+ ff [vi(%, £) + by (%, Dlcia(X — F)Bu(X, ) Px . (2.8)

The second term of the above expression can be integrated by parts. If differentiation with
respect to x; is replaced by that with respect to xj (taking advantage of the functional
dependence of c;y on the difference X — ') then a second integration by parts, together with
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use of the equation of motion (1.3) and the condition of quasi-stationary ¢; = 0, will show that
this second term vanishes.

The resolution (2.7) does not define uniquely the functions ¢; and ; which permits us to
choose the latter function in the simplest possible way. (¢; does not enter the expression for the
energy.) Finally, the expression for the energy of stationary dislocations acquires the form

1 5 - - -
W=3 f f Bi(X)Ciua(X — X)Bu( X)) dx d’x'. 2.9)
The relations which 8 and 8 have to satisfy are

€imBim1 = Qiks €mBims = ik (2.10)

where ay are the same dislocation densities. Further, 8 satisfies the condition following from
(1.3), namely

f Caktm (X = X)Bim p(¥') &x’ = 0.

By contrast, we impose on 8 the condition
Bk (%) =0. Q.11)
The Fourier transform of B(£) which satisfies condition (2.10) and (2.11) is
B = - Bl 1)
Finally, the dislocation energy in a pseudo-continuum could be given by
ak

1 _ _ _
W= m’if anlm(k)crwip(k)Gnr(k)epkaesmbkwksaia(k)alb(— k) F (213)

Let us notice that in a local theory the simplification as carried out above is not possible: in the
process of integration by parts which gave us the opportunity to remove the dependence on the
arbitrary function ¢;, we took advantage of the dependence of ¢ on X — &', while in a classical
continuum the elasticity tensor is simply a constant.

Now we wish to specialize the form of the dislocation density a;. We take it in the simplest
form suitable for pseudo-continuum

ag(X)=b; J'L 8p(X — X') dxj (2.14)

where b; is the Burgers vector and 8z(X) is the pseudo-continuum analog of the delta Dirac
function, defined by

ag(x)=(—27’77;fae‘f'*‘d3k. (2.15)

The integration is to be carried out over the first Brillouin zone B. It is to be noted that by
contrast to the delta Dirac function, 85(X) is everywhere finite and satisfies the condition

fﬁg(f) dx=1 (2.16)

and its Fourier transform equals unity. The Fourier transform of (2.14) is
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a(F) = by [ e F ¥ dx, 2.17)
L

where L, as before, denotes the dislocation line.

3. THE GENERAL EXPRESSION FOR THE SELF-ENERGY OF A
STRAIGHT-LINE DISLOCATION SEGMENT
Let us consider a dislocation line L represented in Fig. 1. The energy of dislocation
segments AB and DC is defined in the limit as r-> o of the difference of two energies, namely,
the energy W, of the dislocation line L and the energy W, of the dislocation line L, lying along
the x-axis. Thereby both dislocation lines are characterized by the same Burgers vector. We
thus have

W= zl_{g (W,— W) 3.1

Now let us rewrite (2.13) in the form

1 - -
Wa= o [ Ao Pk 6
where
U3 =f e"E'fdxaf e *dx, (3.3)
Ly Ly
and
£ R n j - kwks
Aabﬂ(k) = Cukim (k)crwip (k )Gnr(k)fpkaesmb ?" . (3 4)

We consider the dislocation configuration with 2 segments as shown in Fig. 1 and we assume
the Burgers vector to be b = [b,, b,, 0]. Next we calculate the energy using expressions (3.1) and
(3.2) and note that in the expression ;= {3 — ¢ terms which are proportional to r are
divergent. This singularity, however, can be removed. For this purpose, the expressions A,y
have to be modified. Details of this procedure are given in [6] which is concerned with the
energy of kinks. In that paper no restrictions upon the shape of the kink were introduced and
thus those results are applicable in the present case. Finally, the total energy of two segments
could be represented in the form

1 : .
W=§4?HWm®+H&mﬂfﬁM””thwmwmrwﬁ

+sin kyr sin k;(x + x' — ) —cos k;r cos ky(x + x' — D] dx dx' 3.5

where o2 02
Ak) = da(b) T = ') ey (3.6)
- 1 o kks (1 1
Ay = o2 ) =400 s (o ) ()
B = o) CER) — ¢’(k)
0= ey - 38
alby =0 == 50 (3.8)
YA
g g ¢
/5 yix)
L / |
A ;i b

Fig. 1.
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The self-energy of one of the segments, for example AB is

W= 1—617;3 f (b7 Av(k) + b2 Ay(K) W (ky, ko) dsk (3.9)
where
Vi k)= IL J; Y'(x)y'(x") cos ky(x — x") exp {ikz[y(x) — y(x")]} dx dx'. (3.10)

Let us consider now the straight line segment AB, which could be described by the linear
function (Fig. 2)

y(x)=d(1—§), X€[0,1]. 3.11)

After direct integration we obtain

_ afl—cos(kl+kyd)  1—cos(kil- kzd)]
Yki, ky)=d [ Gt kd? P l-kd? ) (3.12)
Let us notice that the self-energy does not depend on the position of the segment. Hence a
convenient choice of the Oy-axis is possible. Even though the integration is carried out along
the whole line in (3.10), a nonvanishing contribution will exist only in the range x€ [0, /]
because for x€ [0, 1], y'(x) = 0. Furthermore, we restrict our study to segments perpendicular to
semi-infinite dislocation lines. Then we set / = 0 and obtain.

2(1~cos k,d
ik, oy = 2 S0l
and for the self-energy
od® _ B sinzk%d
W =2 [ (b2 + b2l 'k 6.13)

(%)
2
4. DISPERSION, METHOD OF ANALYSIS AND ESTIMATION OF PARAMETERS

To restate, we are working in the framework of the theory of an isotropic pseudo-
continuum. We set for the functions c(k)

y

¥

Fig. 2.
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m k
Sll'l (2 K)
¢’(k) = ¢(0) RN (i=1,2). 4.1
(Gx)

K is the radius of the isotropic Brillouin sphere. The form (4.1) corresponds in the discrete case
to taking into account the interaction between nearest neighbors only (weak dispersion).
Further, we assume the parabolic approximation of c¢(k)/c(0):

wkz

k)

- —m=1-T 4.2
hk) 6;2(0)(1 Hk =1 TN 4.2)

Formula (3.13) can now be rewritten in the form
w= 2L j [b2A, %) + b2ALKR(I(K) k. @3)

A,” and A,® are obtained from A, and A, by replacing ¢,(k) and a(k) in (3.6) and (3.7) by the
constants ¢,%(0) and a(0), while {(k) is defined by
sinZ%Q
= . 4.
k) _(—ICEY 4.4
2

The shape of the function I(k) depends on the length d of the dislocation segment. Let us
denote by n the ratio d to b, where b is the length of the Burgers vector. Our considerations
will be restricted to n = 10. If n < 10, we should speak rather of a dislocation kink. For n =10
the function /(k) is displayed in Fig. 3. It is easily seen that the relative maxima decrease

rapidly as the absolute value of k, increases, which is the more pronounced the larger n is. This
permits us to employ in the sequel an approximate form of (k) defined as

l—ak;z 05”(2;5{1—(
1(ky) = K 4.5
Rn —= 'kZI =K
n
2

_w'-4n
a=" g

R, is the average value of I(k) on the segment (K/n, K). Prior to selecting a specific method of
estimation, we study the asymptotic behavior of R, defined as

K smsz
o 1 2 . n
R, = K_E n (kzd)z dk, “-DK DK L 4.6)
n 2

We are interested in R, and nR, as n—x. Let us notice that these quantities are always
positive. Since sin*x<1,

2k
J-K 81 ) dk <(2)2fK 1 dk =(n_;)4K
Kzn(_f{ggd_) 2=N\d/ Jink T an

2

and thus

4 1 4
R, = = R, nS;g. 4.7
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! (k)

2/I0k 4/0k 6/I0k 8/10k & P
Fig. 3.

The idea to introduce R, results from the behavior of the function sin’x/x2. We are more
interested in estimating R,, rather than presenting exact values. From different approximations
such as (1) replacing I(k) by straight-line segments; (2) replacing sin? x by its average value; or
(3) replacing 1/k” by its average value, we obtain the following estimates for R, and nR,

2 1 QP - , 2 (7, 48

m Ro=S-blie2 S @]y timRe =5 (%-1) @“8)

_l_(n—l)z. : a2 4
(2) Rn—ﬂz pEa ]n'flR" n=-— 4.9

2 ke 2
(3) Rn_? PLERE !ll_ngn n L (4.10)
In all cases

liﬂR,.-n=const, !,i.‘}lR"=0' 4.11)

5. ENERGY OF A SEGMENT OF AN EDGE DISLOCATION

From general formulas (3.13), taking advantage of the approximations (4.2) and (4.5), we
obtain the following expression for the energy of the segment of an edge dislocation which is
pinned to two semi-infinite screw dislocation lines,

2422 Kin _
W= bd_gc;z@’{f dk, ” A1~ R — aky® — hk?) dk, dks
0

+R, LK dk, ” AYD - hk? dk, dk;}. 5.1)
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The difference in the factor of two between (5.1) and (3.13) is due to the change in the limits of
integration over k; from — K to K, to 0 to K. Besides, the integration over the volume of the
sphere is replaced in the present case by the integration over the volume of a cylinder of the
same volume as the sphere. This replacement makes the expressions more easily interpretable
in later discussions. It appears to be justified because the values near the boundary contribute
but little to the total expression, since by far the major part comes from the contributions at and
near the center of the volume. A rigorous estimate of the error introduced by such a
replacement is, however, still lacking.

If we neglect dispersion by setting & =0 in (5.1), we obtain the following expression for the
energy of edge dislocations per unit of length

2 1
w=ﬂ{ [(1 R )(n arctg — +ln(1+n2)>——(ln(1+n2) n* 4 n’arctg )
87 ll-» 3

+ Ry n(5+1n 2)] - [(1 - R 1+~ n\/(l +;‘;))
Za(-aw 1w (14:) 430y (14:32)) - 2R, m2- V2 | 5.2

where A = (7% —4)/#* and, further, ¢,%(0) and a(0) have been replaced by expressions in terms
of the elastic constants u and 7, as

1

2(1 v)p’

¢}(0) = f a(0) =

The additional dispersion term is

_ buH( 1 1.1 Inn T 1
Awy = 2n {l_y[(narctgn+2—?)+R,, n(4+2+21 2)]

- [n(\/(l +;17))3 “n —;1,+ Ry n2(v2- 1)]} (5.3)

where H = 7%/24.

In expressions (5.2) and (5.3) the parameters A and H have on purpose, not been absorbed
into the other numerical factors, such that the dependence of the energy expressions on
assumed simplifications would remain in clear evidence.

6. THE ENERGY OF THE SEGMENT OF A SCREW DISLOCATION

From general formulas (3.13) we can obtain the expression analogous to (5.1) which would
be applicable for a screw dislocation. Omitting calculational details, we obtain the following
expression for the energy per unit of length of a screw dislocation segment pinned to two
semi-infinite edge dislocation lines.

w‘=!’4—ﬁ{[(l—R)<narctgl+ ln(1+n2)) A(" —n arCtgl+ ln(”"z))

n

+R, - n(4+21n2)] ﬁ[(n arctg%—n)+m(l—&.)
n

-A(2n’+n?*-n’ 1+—l; ————n’arctgl +R,-n W+ﬁ— .
n \/( 1) n 4

1+
©.1)

The additional dispersion terms are
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__buH[3 3 1 2 \/ 1V \/ 1)
Aw, = 12”{ +3Ruen l_V[(Sn—P+2+4n( (1+n2)) 9n (1+?

2
-2n arctg%+l—n(—';2+—l)>+R,, -n<5—\/2—1—27+ln2>]}. 6.2)

7. ASYMPTOTIC EXPRESSIONS

The expressions (5.2), and (5.3), as well as (6.1) and (6.2) are the more accurate the larger n.
Due to their complicated structure, however, their dependence on # is not readily recognizable.
For this reason it is desirable to establish asymptotic relation for large n. As n >, (5.2) and
(5.3) become

wok=%(l 3)[1“1"+G‘ (l+Gz)] (1.1)
where
Gl=—lx[%<l+';)+ (R, n)w< +ln2)]
]__
(R ?n)w(z—x/z) 72
G,= % =
3
and
Aot =- I;:“H[ —+1(R, )m(1+—”’3:—“‘3 4(\/2—1)]}. (1.3)

The subscript « indicates that the value at ® has to be taken. We recall that (nR,).. = const.
As n->, (6.1) and (6.2) become

s _ bZ[.L _ é _ 1 + Lz
w1 B)nner, -]
where
1 A _ (R"'")‘”( +%2‘ )
L1=*7[1—§+(R,, -n)m(z+§ln2)]; L,= y (7.5)
1-Z 1-Z
3 3
and
2 —- —
Awg = —MH[l +(R, - n)m(l _U36-V2- a2t 2))]. (7.6)
8 1—-v
Expressions (7.1) and (7.4) can be rewritten as
2

w0y’ = 'f: (1——)[ I;] (1.8)

Inr,=-Gy, Inr,=-L,.

where

For A = (7*— 4){#? and (nR,). = 2/7°, the following values for the constants r,, r, are obtained

=0.427, r,=0.234. (7.9
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For the same A and (nR,). = 4/ the constants are
ry=0.353, r,=0.176. (7.10)

We would like to establish the range of validity of (7.7) and (7.8) so as not to deal with the
much more complicated expressions (5.2) and (6.1). Numerical calculations have been per-
formed and are summarized in Table 1. It is seen that in the range of n which is of interest,
good accuracy of simplified expressions is obtained. For edge dislocations for n =10 (for
(nR.)»= R =2/7?. The difference is approximately 1.3% and for n = 100 it is only 0.5%. Thus
expressions (7.7) and (7.8) are applicable in the whole range of n. It should be emphasized that
besides their simple form, expressions (7.7) and (7.8) do not depend on R,, but only on the
limiting value (nR,).. The comparison of the two second and third column, for edge and screw
dislocations, respectively, indicates that the estimation of the limit (nR,). has no strong
influence on the numerical values. For example, for edge dislocations the difference is
decreasing from 4% for n = 10 to 2% for n = 100. Thus, expressions (7.7) and (7.8) will be used
as energy expressions, whereby

2/ < (nRy)w < 47

It is noted that the dispersion contributions (7.3) and (7.6) do not depend on n, are negative
for both types of dislocations and vary in the following ranges as a function of (nR,).

2
035 < Awgt / ey o4, -1 (7.11)
87 3
2
0.22 < Awj / e e W=l (7.12)
87 3
For H = #%24, R =2/#% and v = 1/3 we obtain
b? 4
k__DPp =
daf = - 72035, (0.40 for R ?) (1.13)
L 4
Aos =-7H022, (0.23 for R = ?). (7.14)

For small values of n, the dispersion decreases in a significant manner the value of the
energy. Of course, with increase of n this influence is decreasing because the dispersion
contributions remain constant and the principal part of the energy, given by (7.7) and (7.8) are
increasing as n increases. We have to keep in mind, however, that the model assumed here
deals only with a medium with weak dispersion. It is possible that taking into account long

Table 1. Values of dislocation energies per unit of length in units w/(b*u/d) for » = 1/3

Edge Dislocation Screw Dislocation

. From From (7.1) From From (7.4)
(5.2) 2 9 (6.1) 2 2
R=2/n R=4/m R=2/m R=4/m
10 2.84 2.89 3.01 1.64 1.66 1.74
20 3.68 3.72 3.84 2.20 2.22 2.30
30 4.17 4,21 4.33 2.52 2.54 2.62
40 4,51 4.55 4.67 2.76 2.77 2.85
50 4.78 4,82 4.94 2.94 2.95 3.03
60 5.00 5.04 5.16 3.08 3.09 3.17
70 5.19 5.23 5.35 3.21 3.22 3.30
80 5.36 5.39 5.51 3.32 3.32 3.40
90 5.50 5.53 5.65 3.41 3,42 3.50
100 5.63 5.66 5.78 3.50 3.50 3.58

13SS Vol. 14, No. 2—C
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range interactions (strong dispersion) could have a much more pronounced influence on the
values of the energy and for a large range of n.

The dependence of energies in the range n € [10, 100] on Poisson’s ratio » is given in Table
2. The values are calculated from (7.7) and (7.8) for R =2/w? and A = (7> — 4)/=>. The last row
in Table 2 contains the values for the dispersion Aw.

8. COMPARISON WITH CLASSICAL THEORY OF ELASTICITY
The self-energies per unit length of dislocations are given in classical elasticity by[5)

_bu, n
w1 =5 ]ng, 8.1
for a screw dislocation and
b n
wy = 47T(1 — V) In { (82)

for an edge dislocation, where { is the dimensionless core parameter, in general taken equal to
5. The comparison of (8.1) and (7.8) shows the essential difference of properties of the energy
of a screw dislocation in the two models: in a pseudo-continuum it depends on ». Of course this
is connected with the fact that we considered a segment of a screw dislocation pinned to two
semi-infinite screw dislocation lines. Because of the slow rate of increase of the logarithmic
term, however, the influence of the second term, even for large n, remains significant. The
logarithm term itself is multiplied by a factor (1 — A/3) < 1. Such, even for large values of n
when the constant terms are negligible, the values of the energy are smaller than it would follow
from expression (8.1).

In addition to the logarithmic term, the energy expression contains also the constant term
L, which can be represented as —Inr, (formula (7.8)). For edge dislocation the analogous
constant is represented as — In ry, (formula (7.7)). The interpretation of expressions (7.7) and
(7.8) could be as follows. The pseudo-continuum, looked upon as a continuum, introduces a
uniquely defined core parameter, always smaller than unity, for both kinds of dislocations and
regardless of the value of A. Since, however, it is always smaller than unity, the pseudo-
continuum is a continuum description of a discrete system. It should be yet emphasized that the
energies are given by expression (7.1) and (7.4), supplemented by dispersion effects given by
(7.3) and (7.6). The forms (7.7) and (7.8) are identical to (7.1) and (7.4), respectively, written,
however, in a different way such as to facilitate interpretation and comparison. In an elastic
continuum the necessity of introducing the notion of a core follows from the singularity of the
corresponding integral when approaching the dislocation line; in a pseudo-continbum this
problem does not exist at all: all functions are finite, 8(x) is replaced by 8z(x) and the region of
integration in k-space is also finite.

Table 2. Energy of dislocations for different values of », in units w/(b*u/4m)

Edge Dislocation Screw Dislocation

! T I

v=0 v=1/3 v=1/2 v=0 v=1/3 v=1/2
10 1.62 2.89 4.16 2.11 i 1.66 1.21
20 2.17 3.72 5.24 2.66 2.22 1.76
30 2.50 4.21 5.92 2.99 2.54 2.09
40 2.73 4.55 6.38 3.22 2.77 2.32
50 ? 2.91 4.82 6.74 3.40 2.95 2.50
60 | 3.06 | s.o4 i 7.0 3.54 3.09 | 2.64
70 3.18 5.23 E 7.28 3.67 3.22 2.717
80 3.29 5.39 7.48 3.78 3.32 2.87
90 3.38 5.53 7.68 3.87 3.42 2.97
100 3.47 5.66 7.85 3.95 3.50 3.05
A -0.23 ~0.35 ~0.49 -0.23 ~-0.22 -0.21
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